On some inverse conductivity recovery problem in a sphere:
Uniqueness and reconstruction results with applications to EEG

Maureen Clerc ¹ Juliette Leblond ¹ Jean-Paul Marmorat ²
Christos Papageorgakis ¹

¹Université Côte d’Azur, Inria, France
²Ecole des Mines ParisTech, France

PICOF 2016
Outline

1. Motivation
2. Spherical Model
3. Uniqueness results
4. Reconstruction algorithm
5. Numerical and stability analysis
Conductivity estimation

- Reconstruct the conductivity of the interior of a medium
- Using measurements usually acquired at the boundary
Electroencephalography (EEG)

- Non-invasive imaging technique
- Measures electric potentials
- Activity of the functioning brain
- Electrodes at the surface of the scalp
EEG measurements are mostly affected by the **skull** tissue

- Low conductivity
- Complicated structure
- Intra- and extra-subject tissue variability
 - Thickness
 - Geometry

⇒ Need of conductivity estimation techniques
Outline

1. Motivation
2. Spherical Model
3. Uniqueness results
4. Reconstruction algorithm
5. Numerical and stability analysis
The inverse conductivity estimation problem

We consider the inverse **skull conductivity estimation** problem using **EEG data**, in the preliminary case of an **homogeneous** skull conductivity.
Simplified model

- Three layer **spherical head** model
- Three concentric **nested spheres** modelling: the scalp Ω_2, skull Ω_1 and brain Ω_0 tissues
- The head is assumed to be **piecewise homogeneous**: each of the three layers is supposed to have a **constant** conductivity

$$\sigma \bigg|_{\Omega_i} = \sigma_i, \quad 0 < \sigma_1 < \min(\sigma_0, \sigma_2)$$
Model for the electric potential u

We consider the conductivity Poisson equation:

$$\nabla \cdot (\sigma \nabla u) = \nabla \cdot J^P \text{ in } \mathbb{R}^3,$$

Modeling the primary current J^P as the result of the superposition of Q pointwise dipolar sources:

$$J^P = \sum_{q=1}^{Q} p_q \delta_{C_q},$$

where δ_{C_q} is the Dirac distribution supported at $C_q \in \Omega_0$.

Model for the electric potential with Q dipolar sources

$$\nabla \cdot (\sigma \nabla u) = \sum_{q=1}^{Q} p_q \cdot \nabla \delta_{C_q} \text{ in } \mathbb{R}^3.$$
We solve the conductivity estimation problem from the available \textit{partial} boundary EEG data on S_2:

\[
\begin{align*}
 u_2 &= g, \text{ \textit{pointwise} EEG values} \\
 \partial_n u_2 &= 0, \text{ no current flux outside the head}
\end{align*}
\]

Assuming that the source term has been already \textit{estimated}
Expansions and boundary conditions

The source activity \(u_0 \) and the EEG data \(g \) are expanded on spherical harmonics basis:

\[
 u_0(r) = \sum_{k,m} [\alpha_{0km} r^k + \beta_{0km} r^{-(k+1)}] Y_{km}(\theta, \phi), \quad r \in \Omega_0 \setminus \{C_q\}
\]

where \(r = (r, \theta, \phi) \), \(k \in \mathbb{N}^* \), \(m \in \mathbb{Z} \), and \(- k \leq m \leq k\).

\[
g(\theta, \phi) = \sum_{k,m} g_{km} Y_{km}(\theta, \phi) \text{ on } S_2
\]

The EEG data are transmitted over the spheres \(S_1, S_0 \) with the boundary conditions:

\[
\begin{cases}
 u_{i-1} = u_i & \text{on } S_i \\
 \sigma_{i-1} \partial_n u_{i-1} = \sigma_i \partial_n u_i & \text{on } S_i
\end{cases}
\]
Matrix representation of the boundary conditions

A solution $u(r)$ in a domain Ω_i is expanded on spherical harmonics as:

$$u(r) = \sum_{k,m} [\alpha_{ikm} r^k + \beta_{ikm} r^{-(k+1)}] Y_{km}(\theta, \phi), \quad r \in \Omega_i$$

whereas it's outwards normal derivative as:

$$\partial_n u(x) = \partial_r u(r) = \sum_{k,m} [\alpha_{ikm} k r^{k-1} - \beta_{ikm} (k + 1) r^{-(k+2)}] Y_{km}(\theta, \phi)$$

The transmission from $[u_i \quad \partial_n u_i]$ on S_i to $[u_{i-1} \quad \partial_n u_{i-1}]$ on S_{i-1}, $i = 1, 2$, can be simplified using:

$$\begin{bmatrix} r^k & r^{-(k+1)} \\ \sigma k r^{k-1} & -\sigma (k + 1) r^{-(k+2)} \end{bmatrix} = T_k(r, \sigma)$$
Computing the **data transmission** over the spherical interfaces, the spherical harmonics coefficients of:

- the EEG measurements: g_{km}
- the source term: β_{0km}

can be linked as:

$$\beta_{0km} = \begin{bmatrix} 0 & 1 \end{bmatrix} T_k^{-1}(r_0, \sigma_0) T_k(r_0, \sigma_1) T_k^{-1}(r_1, \sigma_1) T_k(r_1, \sigma_2) T_k^{-1}(r_2, \sigma_2) \begin{bmatrix} g_{km} \\ 0 \end{bmatrix}$$
Data transmission over the spherical interfaces

Computing the **data transmission** over the spherical interfaces the spherical harmonics coefficients of:

- the EEG measurements: g_{km}
- the source term: β_{0km}

can be linked as:

$$
\beta_{0km} = [0 \ 1] \ T_{k}^{-1}(r_0, \sigma_0) \ T_{k}(r_0, \sigma_1) \ T_{k}^{-1}(r_1, \sigma_1) \ T_{k}(r_1, \sigma_2) \ T_{k}^{-1}(r_2, \sigma_2) \ [g_{km} \ 0]
$$

Solving this equation in terms of σ_1, leads to a **polynomial equation** $P(\sigma_1) = 0$ of $\text{deg } P = 2$ in σ_1, depending on:

$P = P_k, r_0, r_1, r_2, \sigma_0, \sigma_2$.
Outline

1 Motivation

2 Spherical Model

3 Uniqueness results

4 Reconstruction algorithm

5 Numerical and stability analysis
The polynomial is of the form:

\[P(\sigma_1) = B_1(k) \sigma_1 \beta_{0km} - (A_2(k) \sigma_1^2 + A_1(k) \sigma_1 + A_0(k)) \ g_{km} \]

Let \(\sigma_{1,k} \) be the one of the two roots of the polynomial \(P \) for the \(k^{th} \) spherical harmonic element.

The unique admissible solution \(\sigma_{1,k} \), satisfies:

\[0 < \sigma_{1,k} < \min(\sigma_0, \sigma_2) \]

and make \(|P| \) achieving its minimal value (\(|P| = 0 \)).
Outline

1. Motivation
2. Spherical Model
3. Uniqueness results
4. Reconstruction algorithm
5. Numerical and stability analysis
Reconstruction algorithm

Consider the error function:

\[\varepsilon_k(\sigma_1, \beta_{0km}, g_{km}) = B_1(k) \sigma_1 \beta_{0km} - (A_2(k) \sigma_1^2 + A_1(k) \sigma_1 + A_0(k)) \ g_{km} \]

As the reconstruction of the conductivity \(\sigma_1 \) does not depend on the spherical harmonics index \(m \), the following normalization is applied over the different spherical harmonics index \(k \):

\[
\begin{align*}
 g_k &= \sum_m g_{km} \bar{\beta}_{km} \\
 \beta_{0k} &= \sum_m \beta_{km} \bar{\beta}_{km} = \sum_m |\beta_{km}|^2
\end{align*}
\]

The estimated conductivity values is computed solving a least square minimization of the error equation for \(K > 0 \):

\[
\sigma_{1}^{est} = \arg \min_s \sum_{k=0}^{K} |\varepsilon_k(s, \beta_{0k}, g_k)|^2
\]
Outline

1. Motivation
2. Spherical Model
3. Uniqueness results
4. Reconstruction algorithm
5. Numerical and stability analysis
Numerical analysis

Numerical analysis of the inverse conductivity estimation problem from:

- **EEG measurements** on the scalp S_2 and **sources activity**
- Both expanded on the spherical harmonics basis
 - Simulated by the FindSources3D software\(^1\) (FS3D)

Using **known** source activity

✓ Perfect conductivity reconstruction

Using **estimated** sources activity

✓ Good results, depended on the quality of the source estimation

\(^1\)See http://www-sop.inria.fr/apics/FindSources3D/.
Stability with respect to the source term

Simulated EEG data by FS3D
- Single dipole \mathbf{C}_1 at frontal lobe
 - with moment \mathbf{p}_1
 - spherical harmonics coefficients g_k and β_{0k}
- 20 inexact locations \mathbf{C}_1^n located at a constant distance from \mathbf{C}_1
 - same moment \mathbf{p}_1
 - spherical harmonics coefficients β_{0k}^n

Conductivity estimation
- from the pairs g_k, β_{0k}^n
Influence of source mislocation on conductivity estimation

(a) Conductivity estimation results for various mislocations \(C_1^n \) of the actual dipole \(C_1 \), computed as a percent of the brain radius \(r_0 \)

(b) Relative error for the mean values \(\tilde{\sigma}_1^{est} \) of the estimated conductivities among the 20 mislocations of the original dipole

Conductivities: \(\sigma_0 = \sigma_2 = 0.33 \text{ S/m} \) while \(\sigma_1 = 0.0042 \text{ S/m} \) in simulated EEG data
Radii: \(r_0 = 0.87, r_1 = 0.92 \) and \(r_2 = 1 \). Number of EEG channels: 81
Summary

- Uniqueness of the inverse conductivity problem
- Reconstruction algorithm
 - robustness with respect to the source term

Future plans:
- Extend numerical analysis to various source configurations:
 - locations, moments and orientations
- Restrict the necessary knowledge of the source term
 - measurements
 - other modalities
- Comparison of results with more realistic head models and skull layer: joint work in progress
Thank you for your attention!

This work was partly supported by:

![Logo](image-url)